关于随机Proudman-Taylor模型的Boussinesq假说(罗德军与合作者)

2024-08-23 | 撰稿: | 浏览:

We introduce a stochastic version of the Proudman–Taylor model, a 2D-3C fluid approximation of the 3D Navier–Stokes equations, with the small-scale turbulence modeled by a transport-stretching noise. For this model we may rigorously take a scaling limit leading to a deterministic model with additional viscosity on large scales. In certain choice of noises without mirror symmetry, we identify an anisotropic kinetic alpha (AKA) effect. This is the first example with a 3D structure and a stretching noise term.


Publication:

SIAM Journal on Mathematical Analysis, Vol. 56, Iss. 3 (2024)

http://dx.doi.org/10.1137/23M1587944

 


Author:

Franco Flandoli

Scuola Normale Superiore of Pisa, 56124 Pisa, Italy.


Dejun Luo

Key Laboratory of RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Email: luodj@amss.ac.cn

科研进展中国科学院数学与系统科学研究院应用数学研究所
地址 北京市海淀区中关村东路55号 思源楼6-7层 南楼5-6、8层 邮编:100190 电子邮箱:iam@amss.ac.cn
@2000-2022 京ICP备05058656号-1