3维O(N)线性sigma模型的大N极限(朱湘禅)

2022-07-11 | 撰稿: | 浏览:

  In this paper we study the large N limit of the O(N)-invariant linear sigma model, which is a vector-valued generalization of the Φ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi ^4$$\end{document} quantum field theory, on the three dimensional torus. We study the problem via its stochastic quantization, which yields a coupled system of N interacting SPDEs. We prove tightness of the invariant measures in the large N limit. For large enough mass or small enough coupling constant, they converge to the (massive) Gaussian free field at a rate of order 1/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\sqrt{N}$$\end{document} with respect to the Wasserstein distance. We also obtain tightness results for certain O(N) invariant observables. These generalize some of the results in Shen et al. (Ann Probab 50(1):131–202, 2022) from two dimensions to three dimensions. The proof leverages the method recently developed by Gubinelli and Hofmanová (Commun Math Phys 384(1):1–75, 2021) and combines many new techniques such as uniform in N estimates on perturbative objects as well as the solutions.
 Publication: 
 Communications in Mathematical Physics, 16 June 2022. 
 Author: 
 Hao Shen 
 Department of Mathematics, University of Wisconsin - Madison, Madison, USA 
 Rongchan Zhu 
 Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, China 
 Xiangchan Zhu 
 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China 
 E-mail: zhuxiangchan@amss.ac.cn

科研进展中国科学院数学与系统科学研究院应用数学研究所
地址 北京市海淀区中关村东路55号 思源楼6-7层 南楼5-6、8层 100190
@2000-2022 京ICP备05058656号-1