O(N)线性sigma模型的大N极限:随机量子化 (朱湘禅,Scott Smith)

2022-05-12 | 撰稿: | 浏览:

   This article studies large $N$ limits of a coupled system of $N$ interacting $\Phi^4$ equations posed over $\mathbb{T}^{d}$ for $d=2$, known as the $O(N)$ linear sigma model. Uniform in $N$ bounds on the dynamics are established, allowing us to show convergence to a mean-field singular SPDE, also proved to be globally well-posed. Moreover, we show tightness of the invariant measures in the large $N$ limit. For large enough mass, they converge to the (massive) Gaussian free field, the unique invariant measure of the mean-field dynamics, at a rate of order $1Λsqrt{N}$ with respect to the Wasserstein distance. We also consider fluctuations and obtain tightness results for certain $O(N)$ invariant observables, along with an exact description of the limiting correlations. 
   Publication: 
   The Annals of Probability 2022, Vol. 50, No. 1, 131–202
   Author: 
   Hao Shen 
   Department of Mathematics, University of Wisconsin - Madison, USA 
   E-mail: pkushenhao@gmail.com
   Scott Smith 
   Department of Mathematics, University of Wisconsin - Madison, USA 
   E-mail: ssmith74@wisc.edu
   Rongchan Zhu 
   Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China; Fakult?t für Mathematik, Universit?t Bielefeld, D-33501 Bielefeld, Germany 
   E-mail: zhurongchan@126.com
   Xiangchan Zhu 
   Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Fakult?t für Mathematik, Universit?t Bielefeld, D-33501 Bielefeld, Germany 
   E-mail: zhuxiangchan@amss.ac.cn  

科研进展中国科学院数学与系统科学研究院应用数学研究所
地址 北京市海淀区中关村东路55号 思源楼6-7层 南楼5-6、8层 100190
@2000-2022 京ICP备05058656号-1