流形值的随机热方程研究进展(朱湘禅等)

2021-01-15 | 撰稿: | 浏览:

朱湘婵等人用狄氏型理论构造了有限体积和无穷体积上取值于流形的随机热方程的鞅解。这里只要求流形是完备的和随机完备的。我们证明这个解是以流形上的Wiener测度为不变分布。我们通过泛函不等式研究了解的性质,得到了有限体积下在Ricci曲率有下界时的指数遍历性;无穷体积下,当Ricci曲率为正时,解的指数遍历,当sectional曲率为负时,解不遍历。有限体积时我们通过Andersson-Driver估计形式上导出这个方程与Haier提出的几何热方程相同。
1.X. Chen, B. Wu, R. Zhu, X. Zhu, Stochastic Heat Equations for infinite strings with Values in a Manifold,Transactions of the American Mathematical Society 374, 1 407-452,2021
2. M. Rockner, B. Wu, R. Zhu, X. Zhu,Stochastic Heat Equations with Values in a Manifold via Dirichlet Forms,SIAM Journal on Mathematical Analysis 52(3):2237-2274,2020

 

科研进展中国科学院数学与系统科学研究院应用数学研究所
地址 北京市海淀区中关村东路55号 思源楼6-7层 南楼5-6、8层 100190
@2000-2022 京ICP备05058656号-1