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Abstract

We analyze the network congestion game with atomic players, asymmetric strategies, and
the maximum latency among all players as social cost. This important social cost function is
much less understood than the average latency. We show that the price of anarchy is at most
two, when the network is a ring and the link latencies are linear. Our bound is tight. This is
the first sharp bound for the maximum latency objective.

1 Introduction

Selfish routing is a fundamental problem in algorithmic game theory, and was one of the first
problems which were intensively studied in this field [KP99, MS01, RT02, Czu04]. A main question
in this field concerns the cost of selfishness: how much performance is lost because agents behave
selfishly, without regard for the other agents or for any global objective function?

The established measure for this performance loss is the price of anarchy (PoA) [KP99]. This
is the worst-case ratio between the value of a Nash equilibrium, where no player can deviate
unilaterally to improve, and the value of the optimal routing.

Of particular interest to computer science are network congestion games, where agents choose
routing paths and experience delays (latencies) depending on how much other players also use
the edges on their paths. Such games are guaranteed to admit at least one Nash equilibrium
[Ros73]. Generally, the price of anarchy for a selfish routing problem may depend on the network
topology, the number of players (including the non-atomic case where an infinite number of players
each controls a negligible fraction of the solution), the type of latency functions on the links, and
the objective functions of the players and of the system (the latter is often called the social cost
function).

Most of the existing research has focused on the price of anarchy for minimizing the total
latency of all the players [Rou02, ADG+06]. Indeed, this measure is so standard that it is often not
even mentioned in titles or abstracts. In most cases, a symmetric setting was considered where all
players have the same source node and the same destination node, and hence the same strategy set.
[CK05] and [AAE05] independently proved that the PoA of the atomic congestion game (symmetric
or asymmetric) with linear latency is at most 2.5. This bound is tight. The bound grows to 2.618
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for weighted demands [AAE05], which is again a tight bound. In non-atomic congestion games
with linear latencies, the PoA is at most 4/3 [RT02]. This is witnessed already by two parallel
links. The same paper also extended this result to polynomial latencies.

In this work, we regard as social cost function the maximum latency a player experiences. While
this cost function was suggested already in [KP99], it seems much less understood. For general
topologies, the maximum PoA of atomic congestion games with linear latency is 2.5 in single-
commodity networks (symmetric case, all player choose paths between the same pair of nodes), but
it grows to Θ(

√
k) in k-commodity networks (asymmetric case, k players have different nodes to

connect via a path) [CK05]. The PoA further increases with additional restrictions to the strategy
sets. [GLMM06] showed that when the graph consists of n parallel links and each player’s choice can
be restricted to a particular subset of these links, the maximum PoA lies in the interval [n− 1, n).

For non-atomic selfish routing, [LRTW11] showed that the PoA of symmetric games on n-node
networks with arbitrary continuous and non-decreasing latency functions is n − 1, and exhibited
an infinite family of asymmetric games whose PoA grows exponentially with the network size.

Our setting: In this work, we analyze the price of anarchy of a maximum latency network
congestion game for a concrete and useful network topology, namely rings. Rings are frequently
encountered in communication networks. Seven self-healing rings form the EuroRings network, the
largest, fastest, best-connected high-speed network in Europe, spanning 25,000 km and connecting
60 cities in 18 countries. As its name suggests, the Global Ring Network for Advanced Applications
Development (GLORIAD) [GLO] is an advanced science internet network constructed as an optical
ring around the Northern Hemisphere. The global ring topology of the network provides scientists,
educators and students with advanced networking tools, and enables active, daily collaboration
on common problems. It is therefore worthwhile to study this topology in particular. Indeed,
considerable research has already gone into studying rings, in particular in the context of designing
approximation algorithms for combinatorial optimization problems [AZ08, BKK01, Che04, SSW98,
Wan05].

As in most previous work, we assume that traffic may not be split, because this causes the
problem of packet reassembly at the receiver and is therefore generally avoided. Furthermore, we
assume that the edges (“links”) have linear latency functions. That is, each link e has a latency
function ℓe(x) = aex+be, where x is the number of players using link e and ae and be are nonnegative
constants.

For the problem of minimizing the maximum latency, even assuming a central authority, the
question of how to route communication requests optimally is nontrivial; it is not known whether
this problem is in P . It is known for general (directed or undirected) network topologies that
already the price of stability (PoS), which is the ratio of the value of the best Nash equilibrium to
that of the optimal solution [ADK+04], is unbounded for this goal function even for linear latency
functions [CCH10, CCHH11]. However, this is not the case for rings. It has been shown that for
any instance on a ring, either its PoS equals 1, or its PoA is at most 6.83, giving a universal upper
bound 6.83 on PoS for the selfish ring routing [CCH10]. The same paper also gave a lower bound
of 2 on the PoA. Recently, an upper bound of 16 on the PoA was obtained [CCHH11].

Our results: In this paper, we show that the PoA for minimizing the maximum latency on rings
is exactly 2. This improves upon the previous best known upper bounds on both the PoA and the
PoS [CCHH11, CCH10]. Achieving the tight bound required us to upper bound a high-dimensional
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nonlinear optimization problem. Our result implies that the performance loss due to selfishness is
relatively low for this problem. Thus, for ring routing, simply allowing each agent to choose its
own path will always result in reasonable performance. The lower bound example (see Figure 1)
can be modified to give a lower bound of 2d for latency functions that are polynomials of degree at
most d.

Proof overview: Our proof consists of two main parts: first, we analyze for Nash equilibria the
maximum ratio of the latency of any player to the latency of the entire ring, and then we analyze
the ratio of the latency of the entire ring in a Nash equilibrium to the maximum player latency in
an optimal routing. In the first part we show that this ratio is at most roughly 2/3; the precise
value depends on whether or not every link of the ring is used by at least one player in the Nash
equilibrium.

For the second ratio, we begin by showing the very helpful fact that it is sufficient to consider
only instances where no player uses the same path in the Nash routing as in the optimal routing.
For such instances, we need to distinguish two cases. The first case deals with instances for which
there exists a link that in the Nash equilibrium is not used by any player. For such instances we
use a structural analysis to bound the second ratio from above by 2 + 2/k, where k is the number
of agents in the system.

For the main case in which the paths of the players in the Nash equilibrium cover the ring,
we show that the second ratio is at most 3. We begin by using the standard technique of adding
up the Nash inequalities which state that no player can improve by deviating to its alternative
path. This gives us a constraint which must be satisfied for any Nash equilibrium, but this does
not immediately give us an upper bound for the second ratio. Instead, we end up with a nonlinear
optimization problem: maximize the ratio under consideration subject to the Nash constraint.
The analysis of this problem was the main technical challenge of this paper. We use a series of
modifications to reach an optimization problem with only five variables, which, however, is still
nonlinear. It can be solved by Maple, but we also provide a formal solution.

2 The Selfish Ring Routing Model

Let I = (R, ℓ, (si, ti)i∈[k]) be a selfish ring routing (SRR) instance, where R = (V,E) is a ring and
where for each agent i ∈ [k] the pair (si, ti) denotes the source and the destination nodes of agent i.
We sometimes refer to the agents as players. For every link e ∈ E we denote the latency function by
ℓe(x) = aex+ be, where ae and be are nonnegative constants; without loss of generality we assume
that ae, be are nonnegative integers. This is feasible since real-valued inputs can be approximated
arbitrarily well by integers by scaling the input appropriately.

For any subgraph P of R (written as P ⊆ R), we slightly abuse the notation and identify P
with its link set E(P ). If Q is a path on R with end nodes s and t, we use P\Q to denote the graph
obtained from P by removing all nodes in V (P ) ∩ V (Q) \ {s, t} (all internal nodes of Q which are
contained in P ), and all links in P ∩Q (all links of Q which are contained in P ).

For any feasible routing π = {P1, . . . , Pk}, where Pi is a path on R between si and ti, i = 1, . . . , k,
we denote by M(π) := maxi∈[k] ℓ(Pi, π) the maximum latency of any of the k agents. Here we
abbreviate by ℓ(P, π) the latency

ℓ(P, π) :=
∑

e∈P
(ae|{i ∈ [k] | e ∈ Pi}|+ be)
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of a subgraph P ⊆ R in π. We say that π is a Nash equilibrium (routing) if no agent i ∈ [k] can
reduce its latency ℓ(Pi, π) by switching Pi to the alternative path R\Pi, provided other agents do
not change their paths.

Sometimes we are only interested in the latency caused by one additional agent and we write
||P ||a :=

∑

e∈P ae. Similarly we abbreviate ||P ||b :=
∑

e∈P be.
Let πN = {N1, . . . , Nk} be some fixed worst Nash routing (i.e., a Nash equilibrium with maxi-

mum system latency M(πN )), and let Π∗ be the set of optimal routings of I.
For any π = {Q1, . . . , Qk} ∈ Π∗, let

h(π) := |{i ∈ [k] : Ni 6= Qi}|.

I.e., h(π) is the number of agents for which their Nash routings are not the same as their optimal
routings. We choose π∗ = {Q1, . . . , Qk} ∈ Π∗ to be an optimal routing that minimizes h = h(π∗).
Without loss of generality, we assume that {i ∈ [k] : Ni 6= Qi} = [h] := {1, . . . , h}. We call the
agents 1, . . . , h switching agents and we refer to the agents in [k]\[h] as non-switching ones.

For brevity, we write ℓ∗(P ) := ℓ(P, π∗) and ℓN (P ) := ℓ(P, πN ). Abusing notation, for any link
e ∈ R, we set

π∗(e) := |{i ∈ [h] | e ∈ Qi}|,
the number of switching (!) players whose optimal paths traverse e. Analogously, πN (e) := |{i ∈
[h] | e ∈ Ni}|.

3 Main Result and Outline of the Proof

The purpose of this paper is the proof of the following statement.

Theorem 1. The price of anarchy for selfish ring routing with linear latencies is 2.

As mentioned in the introduction, a simple example for which the price of anarchy is two
has been given already in [CCH10]. This is the example given in Figure 1. As is easy to verify,
M(π∗) = 1 and M(πN ) = 2.

Figure 1: A 2-player SRR instance with PoA = 2.

Hence, our result is tight. We can resort to proving the upper bound in Theorem 1. That is,
we need to show that for all SRR instances I the ratio M(πN )/M(π∗) is at most two. The main
steps are as follows.
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1. We begin by restricting the set of Nash routings we need to consider. We show that we can
assume without loss of generality that in πN there is at most one player that uses the same
path as in π∗, i.e., h ≥ k − 1 (Section 3.1). We call the case where there is such a player the
singular case; if there is no such a player, we are in the nonsingular case.

2. We say that the Nash equilibrium πN is a covering equilibrium if the Nash paths of the
switching agents 1, . . . , h cover the ring, i.e., if ∪i∈[h]Ni = R. For any non-covering equilib-

rium, we use a structural analysis of πN to show (Section 4) that the PoA is less than two
for h ≥ 3.

3. We proceed by showing (Lemma 7) that for every covering equilibrium, the ratioM(πN )/ℓN (R)
is at most 2/3.

4. Finally, in the remainder of Section 5, we show that ℓN (R)/M(π∗, I) ≤ 3 for any covering
equilibrium πN . This is the main part of the proof. Combining this with the third statement
concludes the proof of Theorem 1 for covering equilibria.

Some specific cases with small values of h need to be handled separately. Our proof needs the
following technical lemma which is true for both covering and non-covering equilibria. It shows that
any two Nash paths of agents that use different paths in πN and in π∗ share at least one common
link.

Lemma 2. For all i, j ∈ [h], Ni and Nj are not link-disjoint.

Proof. Assume there exist two agents i, j ∈ [h] such that Ni and Nj have no link in common. Hence
their complements, the optimal paths Qi and Qj jointly cover the entire ring, that is, Qi∪Qj = R.

Consider the routing π′ which is exactly the same as π∗, except for these two agents who use
their Nash paths Ni, Nj instead. For any link e ∈ Qi ∩Qj we have π′(e) = π∗(e)− 2, and for every
link e ∈ (Qi\Qj) ∪ (Qj\Qi) the number of agents on this link does not change, i.e., π′(e) = π∗(e).
Since ae ≥ 0 for all e ∈ E, this yields M(π′) ≤ M(π∗). Hence, π′ ∈ Π∗. But we also have
h(π′) < h(π∗), contradicting the choice of π∗ given in Section 2.

3.1 Reduction to Singular and Nonsingular Instances

Lemma 3. Consider any selfish ring routing instance I = (R, ℓ, (si, ti)i∈[k]) with linear latencies.

Let π∗ be an optimal routing and let πN be a Nash routing. Suppose there is an agent q ∈ [k] that uses
the same path in πN as in π∗. Then there exists a selfish routing instance I ′ = (R, ℓ′, (si, ti)i∈[k]\{q})
with linear latency functions ℓ′e(x) such that

• the non-switching agent q is removed from I to get I ′,

• the routing πN restricted to the remaining agents, denoted as πN
′
, is a Nash equilibrium for

I ′,

• the total ring latencies satisfy ℓ′N (R) := ℓ′(R,πN
′
) = ℓN (R), and

• we haveM ′(opt′) ≤M(π∗) for the maximum latencies of individual agents. Here, opt′ denotes
an optimal routing for I ′ and M ′(·) denotes the maximum latency of a routing in I ′.
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Proof. By definition, player q uses path Qq in both πN = {Ni : i ∈ [k]} and π∗ = {Qi : i ∈ [k]}.
Remove player q from I. For every link e ∈ Qq set ℓ

′
e(x) := ℓe(x)+ ae = aex+ be+ ae. The latency

functions of all other links are unchanged. Denote the resulting instance (R, ℓ′, (si, ti)i∈[k]\{q}) by
I ′.

Every routing π for I induces a routing π′ for I ′ in the natural way, by omitting the routing
for player q. From the modified latency defined in the proof, we see that the latency of every edge
in an induced routing is the same as the original latency in I. It follows immediately that

• a routing which is a Nash equilibrium in I induces a Nash equilibrium routing in I ′,

• the latency of the entire ring of an induced routing is also the same as the ring latency of the
original routing in I, and

• the maximum latency of the induced routing π∗′ of the optimal routing π∗ is not larger than
the maximum latency of the optimal routing itself, i.e., M ′(π∗′) ≤M(π∗).

By definition, the optimal routing opt′ for instance I ′ cannot be worse than the feasible routing
π∗′, and we conclude M ′(opt′) ≤M ′(π∗′) ≤M(π∗).

We call the Nash routing πN singular if M(πN ) > maxi∈[h] ℓ
N (Ni), i.e., if the maximum latency

in πN is obtained only by an agent which uses the same routing in πN as it uses in π∗. We call
πN nonsingular otherwise. That is, πN is nonsingular if M(πN ) = maxi∈[h] ℓ

N (Ni). Since we are

interested in upper bounding the ratio M(πN )/M(π∗), applying Lemma 3 repeatedly enables us to
make the following assumption.

Assumption 1. h ≤ k ≤ h+ 1 and h = k + 1 if and only if πN is singular.

Under Assumption 1, for any singular case (πN ,I), Lemma 3 produces a nonsingular case
(πN

′
,I ′) with ℓ′N (R,I ′)/M ′(opt′,I ′) ≥ ℓN (R,I)/M(π∗,I). Therefore we can upper bound the

price of anarchy for the SRR problem as follows:

• analyze the ratio ℓN (R,I)/M(π∗,I) only for nonsingular instances I where no player uses
the same path in πN and π∗, and

• analyze the ratio M(πN ,I)/ℓN (R,I) for general instances I.

This is what we will do in the remainder of the paper.

4 Non-Covering Equilibria

Theorem 4. The ratio M(πN )/M(π∗) is at most 4
3 +

5
3h for instances for which ∪i∈[h]Ni 6= R.

The proof of Theorem 4 consists of the following two steps. First we show that the ratio
ℓN (R)/M(π∗) is at most 2+ 2

h . This is Lemma 5. Next we show (Lemma 6) that for any uncovered
instance, if ℓN (R)/M(π∗) ≤ α for some constant α, then M(πN )/M(π∗) is at most (2α + 1

h)/3.
This proves Theorem 4, which itself proves Theorem 1 for the non-covered case with h ≥ 3. The
remaining case of non-covering equilibria with h = 2 is handled in Section 6, where we show
M(πN )/M(π∗) ≤ 2 directly by utilizing the structural properties of rings.

Lemma 5. Let I be an SRR instance with ∪i∈[h]Ni 6= R. Then ℓN (R)/M(π∗) ≤ 2 + 2
h .
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Figure 2: Proof for non-covering equilibria. For this figure, we have mapped the ring to the real
line.

Proof. By Lemma 3 it suffices to consider the nonsingular case. That is, we assume without loss
of generality that k = h, i.e., we assume that all agents change their paths. There exist two agents
p, q ∈ [h] such that ∪i∈[h]Ni ⊆ Np∪Nq  R, and all h paths in N1, N2, . . . , Nh share a common link
in Np ∩Nq. This holds because if there were three agents that do not all share a same link, then
two of them would not share a link at all. This is due to the assumption ∪i∈[h]Ni 6= R. However,
this contradicts Lemma 2. Therefore we can take P to be the longest path in Np ∪ Nq with end
link g1 and g2 (possibly {g1} = {g2} = P ) such that πN (gi) > h/2 for i = 1, 2 and

πN (g) ≤ h/2 for any link g ∈ Np ∪Nq \ P. (1)

See Figure 2. Since we have g1 = g2 or πN (g1) + πN (g2) > h, there exists an agent j ∈ [h] such
that {g1, g2} ⊆ Nj and thus P ⊆ Nj . Let Y ⊆ Qj consist of links e with π

N (e) ≥ 1 and Z = Qj\Y .
It can be seen from (1) that ℓN (Qj) ≤ h

2 ||Y ||a + ||Y ||b + ||Z||b and therefore

ℓN (R) = ℓN (Qj) + ℓN (Nj) ≤ 2ℓN (Qj) + ||Y ||a + ||Z||a
≤ (h+ 1)||Y ||a + 2||Y ||b + ||Z||a + 2||Z||b. (2)

Since

ℓ∗(Qj) ≥
h

2
||Y ||a + ||Y ||b + h||Z||a + ||Z||b, (3)

the ratio of the upper bound (2) for ℓN (R) to the lower bound (3) for ℓ∗(Qj) is maximized for
||Z||a = ||Z||b = ||Y ||b = 0 and is (h+ 1)/(h/2) = 2 + 2/h.

To conclude the proof of Theorem 4, we finally show the following.

Lemma 6. The ratio M(πN )/M(π∗) is at most (2α + 1
h)/3 for instances for which ∪i∈[h]Ni 6= R

and ℓN (R)/M(π∗) ≤ α.

Proof. It suffices to show that for any agent i ∈ [k] the inequality ℓN (Ni) ≤ 1
3(2α+

1
h)M(π∗) holds.

Consider an arbitrary agent i ∈ [k]. Let Ci := R\Ni, the complement of player i’s path Ni. We
partition the link set of Ci into the set of links Y := {e ∈ Ci | πN (e) ≥ 1} which, in routing πN ,
have at least one agent on it and the set of links Z := Ci\Y with no players on it in routing πN .
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Since h is the number of players whose paths in πN deviate from the one in π∗, the links e in
Z satisfy π∗(e) ≥ h, that is, there are at least h players using these links in the routing π∗. Hence
M(π∗) ≥ h||Z||a. In the routing πN , if player i would switch from path Ni to Ci, it would have a
latency of at most ℓN (Ci) + ||Y ||a + ||Z||a. Since πN is a Nash equilibrium, we have

ℓN (Ni) ≤ ℓN (Ci) + ||Y ||a + ||Z||a ≤ 2ℓN (Ci) +
1

h
M(π∗). (4)

By assumption we also have ℓN (Ni) + ℓN (Ci) = ℓN (R) ≤ αM(π∗). Adding twice this inequality to
(4) gives 3ℓN (Ni) ≤ (2α+ 1

h)M(π∗), as required.

5 Covering Equilibria

For covering equilibria, we show that the price of anarchy is at most 2. This is again a two-step
approach. First, the covering property implies an upper bound 2/3 on M(πN )/ℓN (R) as follows.

Lemma 7. If ∪i∈[h]Ni = R, then M(πN )/ℓN (R) ≤ 2/3.

Proof. Take Q ∈ πN with ℓN (Q) =M(πN ). Then ℓN (Q) ≤ ℓN (R\Q) + ||R\Q||a as πN is covering.
From ℓN (R) = ℓN (Q) + ℓN (R\Q) ≥ 2ℓN (Q) − ||R\Q||a ≥ 2ℓN (Q) − ℓN (R\Q) = 3ℓN (Q) − ℓN (R),
we deduce that M(πN ) = ℓN (Q) ≤ 2

3ℓ
N (R).

Second, we prove ℓN (R)/M(π∗) ≤ 3 by distinguishing between the case h ≤ 2 and h > 2.

Theorem 8. If ∪i∈[h]Ni = R, then ℓN (R)/M(π∗) ≤ 3.

The former case h ≤ 2 is proved in Section 6, which along with Lemma 20 in this section
establishes Theorem 8.

By Lemma 3, we only need to bound ratio ℓN (R)/M(π∗) for nonsingular case where h = k. In
this section we consider the k = h ≥ 3 switching players. For each switching player i ∈ [h], we can
formulate an inequality ℓN (Ni) ≤ ℓN (Qi)+ ||Qi||a saying that its Nash path may not have a longer
latency than its alternative path, if one unit load is added on every link of the latter. We obtain a
constraint by adding up all of these inequalities.

We can assume that every link has a latency function of x or 1. This can be achieved by
replacing a link e with latency function aex + be by ae links with latency function x followed by
be links with latency function 1. Now there are only two types of links left, the ones with latency
function x and the ones with latency 1. We introduce variables which count the number of links
of both types which are used by a certain number of players, and write the constraint that we
constructed above in terms of these variables. We then give an upper bound for ℓN (R)/M(π∗) in
terms of these variables as well.

We end up with a nonlinear optimization problem: maximize the ratio under consideration
subject to the Nash constraint. For this problem, we first show that, for the links with latency
function 1, only the total number of players on all these links affects the upper bound. For any
fixed number of players h that do not use the same path in the Nash routing as in the optimal
routing, this still leaves us with h+3 variables, since we have one variable for each possible number
of players on the links with latency function x. We now use a centering argument to show that only
at most two of these h variables are nonzero in an optimal solution of this optimization problem.
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Using normalization, this finally gives us an optimization problem with five variables. This
problem unfortunately is still not linear. It can be solved by Maple, but we also provide a formal
solution. To do this, we fix h and another variable, and solve the remaining problem; we then
determine the optimal overall values of the fixed h and that variable.

Summing the Nash inequalities For a given path P ⊆ R, let P a be the subset of links with
latency function x and let P b be the subset of links with latency function 1.

Consider a link e ∈ Ra (resp. Rb). By definition and our assumption that k = h, this link occurs
in πN (e) Nash paths. That is, this link occurs πN (e) times on the left-hand side of the h Nash
inequalities given above—each time with coefficient πN (e) (resp. 1). On the other hand, it occurs
h − πN (e) times on the right-hand side of the inequalities, each time with coefficient πN (e) + 1
(resp. 1).

Formally, we have for i = 1, . . . , h
∑

e∈Na
i

πN (e) +
∑

e∈Nb
i

1 = ℓN (Ni) ≤ ℓN (Qi) + ||Qi||a =
∑

e∈Qa
i

(πN (e) + 1) +
∑

e∈Qb
i

1

and, by summation,
∑

e∈Ra

(πN (e))2 +
∑

e∈Rb

πN (e) ≤
∑

e∈Ra

(h− πN (e))(πN (e) + 1) +
∑

e∈Rb

(h− πN (e)) ,

or
∑

e∈Ra

(

2(πN (e))2 − h
)

+
∑

e∈Rb

2πN (e) ≤
∑

e∈Ra

(h− 1)πN (e) +
∑

e∈Rb

h.

Writing Ai (resp. Bi) as the number of links with i players on it and a latency function of x
(resp. 1), we can group links with the same numbers of players and write the above as

h
∑

i=1

((2i2 − h)Ai + 2iBi) ≤
h
∑

i=1

((h − 1)iAi + hBi) (5)

⇒
h

∑

i=1

((

2i

h
− 1

i

)

Ci +
2i

h2
Bi

)

≤
h
∑

i=1

(

h− 1

h
Ci +

1

h
Bi

)

(6)

where we have written Ci =
i
hAi and divided by h2.

Bounding the optimal latency For the optimal routing we also have, by definition and the fact
that we are in the nonsingular case, h inequalities of the form M(π∗) ≥ ℓ∗(Qi), i ∈ [h]. Summing
all the inequalities and dividing by h implies a lower bound on M(π∗), namely

M(π∗) ≥ 1

h

h
∑

i=1

ℓ∗(Qi) =
1

h

h
∑

i=1

(

(h− i)2Ai + (h− i)Bi

)

.

Thus we have

ℓN (R)

M(π∗)
≤

∑h
i=1 (iAi +Bi)

∑h
i=1

(

(h−i)2

h Ai +
h−i
h Bi

) =

∑h
i=1

(

Ci +
1
hBi

)

∑h
i=1

(

(h−i)2

ih Ci +
h−i
h2 Bi

) (7)

and we want to find an upper bound for this expression under the restriction (6).
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Lemma 9. If
∑h

i=1Ci = 0, then ℓN (R)/M(π∗) ≤ 2.

Proof. Since Ci ≥ 0 by definition, we have Ci = 0 for all i ∈ [h]. Condition (6) implies that
∑h

i=1
i
hBi ≤ 1

2

∑h
i=1Bi. Therefore, by (7), the ratio ℓN (R)/M(π∗) is at most (

∑h
i=1Bi)/(

∑h
i=1Bi−

∑h
i=1

i
hBi) ≤ (

∑h
i=1Bi)/(

1
2

∑h
i=1Bi) = 2.

Rewriting the problem Henceforth we assume
∑h

i=1Ci > 0. Using (h−i)2

ih = h
i +

i
h −2, from (7)

we arrive at the following inequality after dividing numerator and denominator by
∑h

j=1Cj > 0.

ℓN (R)

M(π∗)
≤

1 +
∑h

i=1
Bi

h
∑h

j=1
Cj

∑h
i=1

(

(

h
i +

i
h

)

Ci∑h
j=1

Cj

+ h−i
h2

Bi∑h
j=1

Cj

)

− 2

≤ 1 + β
∑h

i=1

(

h
i +

i
h

)

Di − 2 + β − z

where β :=
∑h

i=1
Bi

h
∑h

j=1
Cj

≥ 0, z :=
∑h

i=1
iBi

h2
∑h

j=1
Cj

∈ [βh , β], and Di := Ci∑h
j=1

Cj

for every i ∈ [h].

Notice that
∑h

i=1Di = 1. We divide both sides of (6) by
∑h

j=1Cj and obtain the constraint
∑h

i=1

(

2i
h − 1

i

)

Di + 2z ≤ h−1
h + β. Our problem now looks as follows.

ℓN (R)

M(π∗)
≤ max

1 + β
∑h

i=1

(

h
i +

i
h

)

Di − 2 + β − z
(8)

s.t.
h

∑

i=1

(

2i

h
− 1

i

)

Di + 2z ≤ h− 1

h
+ β (9)

h
∑

i=1

Di = 1, Di ≥ 0 ∀i ∈ [h] (10)

β ≥ z ≥ β/h (11)

To bound the ratio ℓN (R)/M(π∗) from above we will solve the general problem (8)-(11), where we
ignore our definitions of β and z above and thus allow β and z to take any nonnegative real values
(subject to (11)).

Since h
i +

i
h ≥ 2 for all i ≥ 1 and h ≥ 1, we see that for any β ≥ 0 and h ≥ 1, the denominator

in (8) is positive for every feasible solution ({Di}hi=1, z) of (9)–(11). We can therefore also consider
the following equivalent minimization problem:

min

{

h
∑

i=1

(

h

i
+
i

h

)

Di − z

∣

∣

∣

∣

∣

(9)–(11)

}

. (12)

In what follows, we solve (12) for any fixed h and β, and then determine which values of h and
β give the highest overall value for (8). For fixed h and β, any solution ({Di}hi=1, z) of (9) – (11) is
either an optimal solution to both problem (8)–(11) and problem (12) or to neither of them. The
next lemma helps to simplify our problem (12), and hence problem (8)–(11).
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Lemma 10. There is an optimal solution ({Di}hi=1, z) of (12), which is also an optimal solution
of (8) – (11), such that Di > 0 for at most two values of i. If there are two such values, they are
consecutive.

Proof. Consider an optimal solution ({Di}hi=1, z) of (12). Suppose for a contradiction that there
exist two indices i1 ≤ i2 − 2 such that Di1 > 0 and Di2 > 0. We can modify the solution {Di}hi=1

as follows. Let mj (j = 1, 2) be real values with 0 < mj ≤ Dij . Subtract m1 from Di1 and add it

to Di1+1. Subtract m2 from Di2 and add it to Di2−1. Then we still have
∑h

i=1Di = 1 and Di ≥ 0
(i = 1, . . . , h).

We need to determine m1 and m2 so that constraint (9) is still satisfied. To this end, we
investigate by how much the sum on the left-hand side of (9) increases, i.e.,

(

−2i1
h

+
1

i1
+

2(i1 + 1)

h
− 1

i1 + 1

)

m1 +

(

2(i2 − 1)

h
− 1

i2 − 2
− 2i2

h
+

1

i2

)

m2

=

(

1

i1
+

2

h
− 1

i1 + 1

)

m1 −
(

2

h
+

1

i2 − 1
− 1

i2

)

m2,

which should be at most 0 in order to maintain a feasible solution. This is equivalent to requiring
that m1

m2
be bounded from above by

(

1

(i2 − 1)i2
+

2

h

)/(

1

(i1 + 1)i1
+

2

h

)

=: αi1i2 ≤ 1, (13)

where the last inequality holds since i2 ≥ i1 + 2. On the other hand, we aim at decreasing the
objective function in (12) with this procedure. Therefore, we require the increase of the objective
value to be negative. From this we get

0 >

(

− h

i1
− i1
h

+
h

i1 + 1
+
i1 + 1

h

)

m1 +

(

h

i2 − 1
+
i2 − 1

h
− h

i2
− i2
h

)

m2

=

( −h
i1(i1 + 1)

+
1

h

)

m1 +

(

h

(i2 − 1)i2
− 1

h

)

m2

⇒
(

h

(i2 − 1)i2
− 1

h

)

m2 <

(

h

i1(i1 + 1)
− 1

h

)

m1.

Note that the coefficients of m1 and m2 are positive since i1 + 2 ≤ i2 ≤ h. Therefore, requiring
that the increase of the objective function be negative is equivalent to requiring that m1

m2
be greater

than
(

h

(i2 − 1)i2
− 1

h

)/(

h

i1(i1 + 1)
− 1

h

)

=: βi1i2 (14)

From the definitions in (13) and (14), doing crosswise multiplication, it is easy to check that
βi1i2 < αi1i2 for i1 + 2 ≤ i2 ≤ h. This shows that there exist positive values m1 and m2 such that
αi1i2 ≥ m1

m2
> βi1i2 , and mj ≤ Dij for j = 1, 2. Thus, as a result of our modification of the sequence

{Di}hi=1, the objective function value in (12) decreases by a positive amount, and the constraints
(9)–(11) are still satisfied. This contradicts the optimality of ({Di}hi=1, z).

For an optimal solution ({Di}hi=1, z) to (8)–(11) as given in Lemma 10, let x ∈ [h − 1] be the
minimum index such that Di = 0 for all i ∈ [h]\{x, x + 1}. That is, x is the minimum index such

11



that Dx > 0, or x = h − 1. Writing y for Dx+1, we have Dx = 1 − y, and problem (8) – (11)
transforms to the following relaxation which drops the upper bound β on z in (11).

ℓN (R)

M(π∗)
≤ max

1 + β

h
x + x

h −
(

h
x(x+1) − 1

h

)

y − 2 + β − z
(15)

s.t.
2x

h
− 1

x
+

(

2

h
+

1

x(x+ 1)

)

y + 2z ≤ h− 1

h
+ β (16)

1 ≤ x ≤ h− 1, x ∈ N (17)

0 ≤ y ≤ 1 (18)

β/h ≤ z (19)

For convenience, we restate the problem (15) – (19) as follows

ℓN (R)

M(π∗)
≤ max

{

1 + β

f(x, y, z)

∣

∣

∣

∣

g(x, y, z) ≤ 0, x ∈ N, y ∈ [0, 1], z ≥ β

h

}

, (20)

where we have relaxed the constraint on x and

f(x, y, z) =
h

x
+
x

h
−

(

h

x(x+ 1)
− 1

h

)

y − z − 2 + β,

g(x, y, z) =
2x

h
− 1

x
+

(

2

h
+

1

x(x+ 1)

)

y + 2z − h− 1

h
− β.

We turn to consider the corresponding minimization of f(x, y, z) under the same constraints. It is
clear that the optimal value of the minimization is attained at g(x, y, z) = 0 (if g(x, y, z) < 0, we
can increase z and decrease the objective function). So we only need to consider the minimization
problem, as well as its relaxation, with this equality constraint:

Ω1 := min {f(x, y, z) | g(x, y, z) = 0, x ∈ N, y ∈ [0, 1], z ≥ β/h} (21)

Ω2 := min {f(x, y, z) | g(x, y, z) = 0, x ≥ 1, y ∈ [0, 1], z ≥ β/h} (22)

Observation 1. For i = 1 or 2, if Ωi ≥ 1+β
3 , then ℓN (R)

M(π∗) ≤ 3.

Main ideas In view of Observation 1, we will prove Ω1 ≥ 1+β
3 for h ∈ {3, 4, 6} in Section 5.1, and

Ω2 ≥ 1+β
3 for h ≥ 7 in Section 5.2. The proof for Ω1 utilizes a case analysis, which is simplified by

the fact that every optimal solution of (21) when h ∈ {3, 4, 6} has its y or z touch the boundary.
The key idea for lower bounding Ω2 is using the fact that the optimal solution of (22) must be a
KKT point (a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions). We will bound the
values of objective function f at all KKT points of (22) from below by 1+β

3 .
To lower bound Ω1 and Ω2, we need to consider the derivatives of the objective and constraint

functions. Using x ≥ 1 and y ∈ [0, 1], we obtain

∂f

∂x
=
1

h
− h(1− y)

x2
− hy

(x+ 1)2
,

∂f

∂y
=
1

h
− h

x(x+ 1)
< 0,

∂f

∂z
=− 1,

∂g

∂x
=
2

h
+

1− y

x2
+

y

(x+ 1)2
> 0,

∂g

∂y
=
2

h
+

1

x(x+ 1)
> 0,

∂g

∂z
=2.
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For brevity we define χ := (
√
2h2 − h+ 1 − 1)/2 and ν :=

√
2h2 − h/2. It is straightforward to

verify the following equivalences.

Lemma 11. (i) ∂f/∂x
∂g/∂x = ∂f/∂y

∂g/∂y ⇔ y = x+1
2x+1 ⇔ ∂f

∂x = ∂f
∂y ⇔ ∂g

∂x = ∂g
∂y .

(ii) ∂f/∂y
∂g/∂y ≥ ∂f/∂z

∂g/∂z ⇔ x ≥ χ, and ∂f/∂y
∂g/∂y = ∂f/∂z

∂g/∂z ⇔ x = χ.

(iii) If y ∈ {0, 1}, then ∂f/∂x
∂g/∂x = ∂f/∂z

∂g/∂z ⇔ x+ y = ν.

(iv) If y = x+1
2x+1 , then

∂f/∂x
∂g/∂x = ∂f/∂z

∂g/∂z ⇔ x = χ.

Lemma 12. Let (x∗, y∗, z∗) be an optimal solution to (21) or (22).

(i) If x∗ < χ, then y∗ = 1 or z∗ = β/h.

(ii) If x∗ > χ, then y∗ = 0.

(iii) x∗ ≤ h− 1.

Proof. (i)–(ii) If x∗ < χ (resp. x∗ > χ), then it follows from Lemma 11(ii) that ∂f/∂y
∂g/∂y < ∂f/∂z

∂g/∂z

(resp. ∂f/∂y
∂g/∂y >

∂f/∂z
∂g/∂z ). Since increasing y∗ and decreasing z∗ (resp. increasing z∗ and decreasing

y∗) cannot give a better solution for the problem, it must be the case that y∗ = 1 or z∗ = β/h
(resp. y∗ = 0).

(iii) We have ∂f
∂x = 0 only if x = h−1, and ∂f

∂x < 0 only if 1 ≤ x < h−1. Therefore, if x∗ > h−1,
decreasing x∗ would give smaller objective value.

5.1 Covering Equilibria with h ∈ {3, 4, 6}
In this case we lower bound Ω1 by (1 + β)/3, which along with Observation 1 implies the upper
bound of 3 on ℓN (R)/M(π∗) for h ∈ {3, 4, 6}.

Lemma 13. For h ∈ {3, 4, 6}, Ω1 ≥ 1+β
3 .

Proof. Let (x∗, y∗, z∗) denote an optimal solution to problem (21). Notice that x∗ ∈ [h − 1] is
an integer, which cannot be equal to the noninteger χ for any h ∈ {3, 4, 6}. By Lemma 12(i)–
(ii), we have z∗ = β/h or y∗ = 1 if x∗ < χ and y∗ = 0 otherwise. We calculate and estimate
Ω1 = f(x∗, y∗, z∗) in Tables 1 and 2 below by checking all necessary x∗, using Lemma 12(iii) (see
the fourth column of Table 1 and the third column of Table 2). Table 1 presents the cases for
x∗ < χ and z∗ = β/h, where y∗ ∈ [0, 1] is determined by g(x∗, y∗, z∗) = 0, and Table 2 presents the
cases for y∗ ∈ {0, 1}. In all cases we obtain the claimed lower bound.

5.2 Covering Equilibria with h ≥ 7

In this section, we assume h ≥ 7. Our goal is to prove the optimal objective value Ω2 of problem
(22) is at most (1 + β)/3 for all h ≥ 7. Throughout Section 5.2, we assume (x∗, y∗, z∗) to be a fixed
optimal solution to (22) such that y∗ is minimum. In particular, since f(x, 1, z) = f(x+1, 0, z) and
g(x, 1, z) = f(x+1, 0, z) for all x > 0, z ∈ R, we can assume without loss of generality that y∗ < 1.
In the following, we distinguish among three cases:
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h z∗ χ x∗ g(x∗, y∗, z∗) = 0 y∗ Ω1 = f(x∗, y∗, z∗)

3 β
3 1.5 1 7

6y
∗ + 2z∗ − 1− β = 0 6

7 + 2β
7

1+β
3

1 y∗ + 2z∗ − 5
4 − β = 0 6∈ [0, 1] infeasible

4 β
4

2.19
2 2

3y
∗ + 2z∗ − 1

4 − β = 0 3
8 + 3

4β
75−18β

32 > 1+β
3

1 5
6y

∗ + 2z∗ − 3
2 − β = 0 6∈ [0, 1] infeasible

6 β
6 3.59 2 1

2y
∗ + 2z∗ − 2

3 − β = 0 6∈ [0, 1] infeasible

3 5
12y

∗ + 2z∗ − 1
6 − β = 0 2

5 + 8β
5

71−21β
30 > 1+β

3
1

Table 1: Ω1 ≥ 1+β
3 when x∗ < χ and z∗ = β

h for h = 3, 4, 6.

h χ x∗ y∗ z∗ Ω1 = f(x∗, y∗, z∗)

3 1.5 1, 2 2− x∗ β
2 − 1

12
9−2β

4 ≥ 1+β
3

2

1 1 β
2 + 1

8
19−4β

8 ≥ 1+β
3

4 2.19 2, 3 3− x∗ β
2 − 5

24
55−12β

24 > 1+β
3

3

1 1 β
2 + 1

3
6−β
2 > 1+β

3

2 1 β
2 + 1

12
29−6β

12 > 1+β
3

6 3.59 3, 4 4− x∗ β
2 − 1

8
55−12β

24 > 1+β
3

4

5 0 β
2 − 19

60
47−10β

20 > 1+β
3

Table 2: Ω1 ≥ 1+β
3 when x∗ < χ and y∗ = 1 (resp. x∗ > χ and y∗ = 0) for h = 3, 4, 6.

1) x∗ = 1 (Claim 14),

2) x∗ > 1 and y∗ = 0 (Claim 18), and

3) x∗ > 1 and 0 < y∗ < 1 (Claim 19).

Our basic tool is the KKT conditions which (x∗, y∗, z∗) must satisfy. For notational convenience,
we also express the constraints x ≥ 1, y ∈ [0, 1], z ≥ β/h as gi(x, y, z) ≤ 0, i = 1, 2, 3, 4, respectively,
where g1(x, y, z) = −x + 1, g2(x, y, z) = y − 1, g3(x, y, z) = −y and g4(x, y, z) = −z − β/h. By
the KKT conditions on the minimization problem (22), there exist constant λ and nonnegative

1Note that β ≤ 3/8.
2Note that β ≥ 1/2.
3Note that β ≥ 5/6.
4Note that β ≥ 3/8.
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constants µi (1 ≤ i ≤ 4) such that

∇f(x∗, y∗, z∗) + λ∇g(x∗, y∗, z∗) +
4

∑

i=1

µi∇gi(x∗, y∗, z∗) = 0 (23)

µigi(x
∗, y∗, z∗) = 0 for i ∈ [4]. (24)

Case 1: x∗ = 1. This case is handled by the following claim.

Claim 14. min {f(x, y, z) | g(x, y, z) = 0, x = 1, y ∈ [0, 1]} > (1 + β)/3.

Proof. If x = 1, we have z = 1+ β
2 − 3

2h − ( 1h +
1
4)y from the constraint g(x, y, z) = 0. It follows that

f(x, y, z) = h+ 5
2h − (h2 − 1

4 − 2
h)y − 3 + β

2 , which together with h ≥ 7, y ≤ 1 and β ≥ 0 implies

f(x, y, z) ≥ f(1, 1, z) = h
2 + 9

2h − 11
4 + β

2 >
7
2 − 11

4 + β
2 >

1+β
3 .

Before turning to the next two cases, we prove a few technical lemmas.

Claim 15. If h ≥ 7 and 1 + β − 1+2β
h >

√
2h2−h
h − 2√

2h2−h
, then β >

√
2− 1.

Proof. The function 1+ β− 1+2β
h increases in β for h > 2, and

√
2− 2

√
2−1
h ≤

√
2h2−h
h − 2√

2h2−h
for

h ≥ 7.

In the next two lemmas, we write β−1 := β − 1, β1 := β + 1 and β2 := 2β + 1 for brevity.

Lemma 16. For any constant β ∈ [0,
√
2 − 1), if variables ~ and x satisfy ~ ≥ 7 and x =

1
4(β1~− β2 +

√

(β1~− β2)2 + 8~), then Ψ(~) := ~
x + x

~ −
β
~ ≥ Ψ(7).

Proof. Notice that ~ = 2x2+β2x
β1x+1 . Thus Ψ(~) can be considered as the function of x, which we write

as ψ(x).

ψ(x) =
2x+ β2
β1x+ 1

+
β1x− β1β + 1

2x+ β2
− β

2x2 + β2x
= Ψ(~).

It is easy to check that x is monotonically increasing in ~; in particular ~ ≥ 7 along with β ≥ 0
implies x ≥ 3.897.

Moreover, to prove the lemma, we only need to show that ψ(x) is monotonically increasing in
x. Observe that the last term in the derivative of the above expression

dψ

dx
=

1− 3β − 2β2

(β1x+ 1)2
+

4β2 + 5β − 1

(2x+ β2)2
+

β(4x+ β2)

(2x2 + β2x)2

is positive. It suffices to verify

1− 3β − 2β2

(β1x+ 1)2
+

4β2 + 5β − 1

(2x+ β2)2
≥ 0. (25)

In case of 0 ≤ β ≤ 1
4(
√
17 − 3) < 0.2808, we obtain 1− 3β − 2β2 ≥ max{0, 1 − 5β − 4β2}, and

(25) is true as 0 < (β1x+1)2

(2x+β2)2
≤ 1 for 0 ≤ β ≤

√
2− 1.
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In case of β ∈ (14 (
√
17 − 3),

√
2 − 1) ⊂ [0.28,

√
2 − 1), we have 2β2 + 3β − 1 > 0. It can be

seen from x ≥ 3.897 that (1.7β − 0.3)x > 2β − 0.7, implying 2x+β2

β1x+1 ≤ 1.7 . On the other hand, (25)
follows from

4β2 + 5β − 1

2β2 + 3β − 1
> 2 +

1− (
√
2− 1)

2(
√
2− 1)2 + 3(

√
2− 1)− 1

= 3 > 1.72 ≥ (2x+ β2)
2

(β1x+ 1)2
.

The lemma is proved.

Lemma 17. For any constant β ∈ [0, 0.13), if variables ~ and x satisfy ~ = (2x+1)2+β2(2x+1)+1
β1(2x+1)+2 ≥ 7,

then function Ψ(x) ≡ ~
x + x

~ −
(

~
x(x+1) − 1

~

)

x+1
2x+1 −

β
~ > 2.36.

Proof. Let u = 2x+ 1. Then ~ = u2+β2u+1
β1u+2 ≥ 7, and u =

β1~−β2+
√

(β1~−β2)2+8~−4

2 is lower bounded

by
~−1+

√
(~−1)2+8~−4

2 ≥ 6+
√
88

2 > 7.69, as ~ ≥ 7 and β ≥ 0.

It is routine to check that Ψ(x) = 2~
u + u

2~ +
1

2~u − β
~ , and it is a function ψ of u with derivative

dψ/du as follows:

ψ(u) :=
β1u

3 + (2− 2ββ1)u
2 + (1− 3β)u+ 2

2u(u2 + β2u+ 1)
+

2(u2 + β2u+ 1)

u(2 + β1u)
= Ψ(x).

dψ

du
=
(4β1β + β−1)u

4 + 8βu3 + (4β−1β1 − β1)u
2 − 4β2u− 2

2u2(u2 + β2u+ 1)2

+
2(1 − 3β − 2β2)u2 − 4β1u− 4

u2(2 + β1u)2

By u ≥ 7.69 and β ∈ [0, 0.13), it is easy to see that the numerator of the second term in the above
expression of dψ/du is positive. Since

√
2(u2 + β2u + 1) > u(2 + β1u) holds for any β ∈ [0, 0.13),

we have

dψ

du
>
(4β1β + β−1)u

4 + 8βu3 + (4β−1β1 − β1)u
2 − 4β2u− 2

2u2(u2 + β2u+ 1)2

+
2(1 − 3β − 2β2)u4 − 4β1u

3 − 4u2

2u2(u2 + β2u+ 1)2

=
(1− β)u4 − 4(1 − β)u3 − (9 + β − 4β2)u2 − 4(2β + 1)u− 2

2u2(u2 + β2u+ 1)2

≥0.87u4 − 4u3 − 9.0624u2 − 5.04u − 2

2u2(u2 + β2u+ 1)2

The numerator is positive as u > 7.69. Therefore dψ/du > 0.
Using u > 7.69 and β < 0.13, we obtain Ψ(x) = ψ(u) ≥ ψ(7.69) ≥ 2~

7.69 + 7.69
2~ + 1

15.38~ − 0.13
~ =

200~
769 + 581367

153800~ , which increases in ~ for all ~ ≥ 7. Thus Ψ(x) ≥ 200×7
769 + 581367

153800×7 > 2.36.

Case 2: x∗ > 1 and y∗ = 0. We begin by considering the following relaxed problem, which does
not have a bound on z.

Ω3 := min {f(x, y, z) | g(x, y, z) = 0, x ≥ 1, y = 0} . (26)
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Clearly Ω3 ≤ Ω2. The KKT conditions applied to (26) assert that Ω3 is attained at some feasible
solution (x, z) of (26) for which there exist constants θ and η such that

∇f(x, 0, z) + θ∇g(x, 0, z) + η∇(−x+ 1) = 0

η(−x+ 1) = 0

It follows that Ω3 is attained either when x = 1 or when x > 1 ⇒ η = 0 ⇒ ∂f/∂x
∂g/∂x = −θ = ∂f/∂z

∂g/∂z

holds at (x, 0, z). In the former case, we are done by Claim 14. In the latter case, Claim 11(iii)
gives x = ν, and therefore g(x, 0, z) = g(ν, 0, z) = 0 implies

z =

(

h− 1− 2ν

h
+

1

ν
+ β

)/

2 =: z2.

Notice that Ω3 = f(ν, 0, z2) =
4
√
2h2−h+1
2h + β−5

2 increases in h for h ≥ 7, and hence Ω3 ≥ 4
√
91+1
14 +

β−5
2 , which is greater than 1+β

3 if β ≥
√
2− 1. This together with Ω3 ≤ Ω2 verifies the following

Ω2 > (1 + β)/3 if β ≥
√
2− 1. (27)

We next turn back to (22), and investigate its optimal solution (x∗, 0, z∗).

Claim 18. If x∗ > 1 and y∗ = 0, then Ω2 ≥ (1 + β)/3.

Proof. If z∗ > β/h, since x∗ > 1, the KKT conditions (23)–(24) imply that µ1 = µ4 = 0 and
∂f/∂x
∂g/∂x = −λ = ∂f/∂z

∂g/∂z holds at (x∗, 0, z∗). Using y∗ = 0 and Lemma 11(iii), we obtain x∗ = ν. In

turn g(x∗, 0, z∗) = 0 gives z∗ = z2. So z2 > β/h, which reads 1 + β − 1+2β
h >

√
2h2−h
h − 2√

2h2−h
. It

follows from Lemma 15 that β >
√
2− 1, and further from (27) that Ω2 > (1 + β)/3.

If z∗ = β/h, by (27), we only need to consider the case where β ∈ [0,
√
2 − 1). The constraint

g(x∗, 0, z∗) = 2x∗

h − 1
x∗ + 2z∗ − h−1

h − β gives

x∗ =
1

4

(

(β + 1)h− (2β + 1) +
√

((β + 1)h− (2β + 1))2 + 8h
)

:= x∗(h).

It follows from Lemma 16 that f(x∗, 0, z∗) = h
x∗ + x∗

h − β
h − 2 + β ≥ 7

x∗(7) +
x∗(7)
7 + 6β

7 − 2. This

value is easily checked to be 15
28

√

(6 + 5β)2 + 56 − 41
28β − 67

14 , which is smaller than (1 + β)/3 for
β ≥ 0.

Case 3: x∗ > 1 and 0 < y∗ < 1. In this case, the KKT conditions (23)–(24) imply µi = 0 for

1 ≤ i ≤ 3 and ∂f/∂y
∂g/∂y = −λ = ∂f/∂x

∂g/∂x holds at (x∗, y∗, z∗). In turn, Lemma 11(i) asserts y∗ = x∗+1
2x∗+1 ,

implying

Ω2 ≥ Ω4 := min

{

f(x, y, z)

∣

∣

∣

∣

g(x, y, z) = 0, x ≥ 1, y =
x+ 1

2x+ 1

}

. (28)

From the KKT conditions on the minimization (28), we deduce that Ω4 is attained at some feasible
solution (x, y, z) of (28) for which there exist constants θ1, θ2, η1, η2 such that

∇f(x, y, z) + θ1∇g(x, y, z) + θ2∇(y − x+ 1

2x+ 1
) + η∇(−x+ 1) = 0 (29)

η(−x+ 1) = 0 (30)
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It follows that Ω4 is attained either when x = 1 or when x > 1, in which case η = 0 by (30). In the
former case, we are again done by Claim 14. In the latter case, from (29) we find

∂f

∂x
+ θ1

∂g

∂x
= − θ2

(2x+ 1)2
(31)

∂f

∂y
+ θ1

∂g

∂y
= −θ2 (32)

∂f

∂z
+ θ1

∂g

∂z
= 0 (33)

Since y = x+1
2x+1 , Lemma 11(i) asserts ∂f

∂x = ∂f
∂y and ∂g

∂x = ∂g
∂y , which along with (31) and (32) enforce

θ2 = 0. In turn from (31) and (33) we derive ∂f/∂x
∂g/∂x = −θ1 = ∂f/∂z

∂g/∂z . By y = x+1
2x+1 , Lemma 11(iv)

enforces x = χ. Hence from g(x, y, z) = 0 we obtain

z =
1

2

(

1 + β − 1 + 2χ

h
+

1

χ
−
(

2

h
+

1

χ(χ+ 1)

)

· χ+ 1

2χ+ 1

)

=: z3

It follows that Ω4 = f(χ, χ+1
2χ+1 , z3) =

4
√
2h2−h+1+1

2h + β−5
2 , which increases in h for h ≥ 7. So Ω4 is

lower bounded by 4
√
92+1
14 + β−5

2 , which is greater than 1+β
3 if β > 116−12

√
92

7 > 0.13. Since Ω2 ≥ Ω4

in either case, we have shown that

Ω2 > (1 + β)/3 if β ≥ 0.13. (34)

Next we again focus on the optimal solution (x∗, y∗, z∗) of (22).

Claim 19. If x∗ > 1 and 0 < y∗ < 1, then Ω2 ≥ (1 + β)/3.

Proof. If z∗ > β/h, by x∗ > 1 and the KKT conditions (23)–(24), we obtain µ1 = µ4 = 0 and
∂f/∂x
∂g/∂x = −λ = ∂f/∂z

∂g/∂z at (x∗, y∗, z∗), which is equivalent to x∗ = χ by y∗ = x∗+1
2x∗+1 and Lemma 11(iv).

In turn we have z∗ = z3 by using g(χ, χ+1
2χ+1 , z

∗) = 0. Now z3 > β/h reads 1+β− 1+2β
h >

√
2h2−h+1

h −
2√

2h2−h+1
+ 1

h
√
2h2−h+1

. The right-hand side of this inequality is larger than
√
2h2−h
h − 2√

2h2−h
. It

follows from Claim 15 that β >
√
2− 1 > 0.13, and further from (34) that Ω2 > (1 + β)/3.

If z∗ = β/h, by (34), it suffices to consider β ∈ [0, 0.13). From g(x∗, y∗, z∗) = g(x∗, x∗+1
2x∗+1 ,

β
h ) = 0

we get

h =
(2x∗ + 1)2 + (2β + 1)(2x∗ + 1) + 1

(β + 1)(2x∗ + 1) + 2
.

Under this equation for h ≥ 7 and β ∈ [0, 0.13), Lemma 17 asserts

Ω2 = f(x∗, y∗, z∗) =
h

x∗
+
x∗

h
−

(

h

x∗(x∗ + 1)
− 1

h

)

x∗ + 1

2x∗ + 1
− β

h
− 2 + β > 0.36 + β,

which is obviously greater than 1+β
3 .

To sum up, we have shown the following result.

Lemma 20. If ∪i∈[h]Ni = R and h > 2, then ℓN (R)/M(π∗) ≤ 3.
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6 The Cases h = 1 and h = 2

Lemma 21. Let I be an SRR instance with h = 1. Then M(πN )/M(π∗) ≤ 2.

Proof. Only the case k = 2 is relevant. By assumption, we have N1 = R\Q1 and we have N2 = Q2.
That is, we have π∗ = {Q1, Q2} and we have πN = {N1, Q2}. In particular, we have ℓN (Q1) +
||Q1||a = ℓ∗(Q1). Hence, ℓ

N (Q1) + ||Q1||a ≤ M(π∗). Since πN is a Nash equilibrium, it holds that
ℓN (N1) ≤ ℓN (Q1) + ||Q1||a ≤M(π∗). We thus get

M(πN ) ≤ ℓN (R) = ℓN (N1) + ℓN (Q1) ≤ 2M(π∗) , (35)

as desired.

Lemma 22. Let I be an SRR instance with h = 2 and ∪i=1,2Ni 6= R. Then M(πN )/M(π∗) ≤ 2.

Proof. We first consider the case that I is nonsingular. Then k = h = 2 by definition. Assume
without loss of generality that ℓN (N1) ≤ ℓN (N2). Since πN is a Nash equilibrium, it holds that
ℓN (N2) ≤ ℓN (Q2) + ||Q2||a, which, by the fact that k = h = 2, is at most 2ℓ∗(Q2). Therefore,
M(πN ) = ℓN (N2) ≤ 2ℓ∗(Q2) ≤ 2M(π∗) .

Let us now consider the case that I is singular. That is, we have k = 3 and M(πN ) = ℓN (N3).
First note that we can rewrite

Q1 = R\N1 = (N2 ∪Q2)\N1 = (N2\N1) ∪ (Q2\N1) = (N2\(N1 ∩N2)) ∪ (Q1 ∩Q2)

and, similarly, we have Q2 = (N1\(N1 ∩ N2)) ∪ (Q1 ∩ Q2). Using this and the fact that πN is a
Nash routing, we obtain the following two inequalities.

ℓN (N1) ≤ ℓN (Q1) + ||Q1||a = ℓN (N2)− ℓN (N1 ∩N2) + ℓN (Q1 ∩Q2) + ||Q1||a
ℓN (N2) ≤ ℓN (Q2) + ||Q2||a = ℓN (N1)− ℓN (N1 ∩N2) + ℓN (Q1 ∩Q2) + ||Q2||a

From this we get 2ℓN (N1 ∩N2) ≤ 2ℓN (Q1 ∩Q2) + ||Q1||a + ||Q2||a. Furthermore, when comparing
ℓ∗(Qi) and ℓN (Qi) for i = 1, 2, we can ignore player 3, because it contributes the same to both
values. Hence

ℓ∗(Q1) = ℓ∗(Q1 ∩N2) + ℓ∗(Q1 ∩Q2)

= ℓN (Q1 ∩N2) + ℓN (Q1 ∩Q2) + 2||Q1 ∩Q2||a
= ℓN (Q1) + 2||Q1 ∩Q2||a,

and, similarly, ℓ∗(Q2) = ℓN (Q2) + 2||Q1 ∩Q2||a holds. From this we conclude

M(π∗) ≥ ℓ∗(Q1) = ℓN (Q1) + 2||Q1 ∩Q2||a
= ℓN (Q1 ∩Q2) + ℓN (Q1\Q2) + 2||Q1 ∩Q2||a (36)

M(π∗) ≥ ℓ∗(Q2) = ℓN (Q2) + 2||Q1 ∩Q2||a
= ℓN (Q1 ∩Q2) + ℓN (Q2\Q1) + 2||Q1 ∩Q2||a (37)
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and M(π∗) ≥ ℓ∗(N3) ≥ ℓN (N3) − 2||N3 ∩ N1 ∩ N2||a. Notice that ℓN (Q1\Q2) ≥ ||Q1\Q2||a,
ℓN (Q2\Q1) ≥ ||Q2\Q1||a and 2||N3 ∩N1 ∩N2||a ≤ ℓN (N1 ∩N2). We may thus conclude M(πN ) =
ℓN (N3) is upper bounded by

M(π∗) + 2||N3 ∩N1 ∩N2||a
≤M(π∗) + ℓN (N1 ∩N2)

≤M(π∗) + ℓN (Q1 ∩Q2) +
1

2
||Q1||a +

1

2
||Q2||a

≤ 2M(π∗)− 1

2
ℓN (Q1\Q2)− 2||Q1 ∩Q2||a −

1

2
ℓN (Q2\Q1) +

||Q1||a + ||Q2||a
2

≤ 2M(π∗)− 1

2
||Q1\Q2||a − 2||Q1 ∩Q2||a −

1

2
||Q2\Q1||a +

||Q1||a + ||Q2||a
2

≤ 2M(π∗).

Lemma 23. If ∪i∈[h]Ni = R and h ≤ 2, then ℓN (R)/M(π∗) ≤ 3.

Proof. When h = 1, inequalities (35) imply the conclusion. By Lemma 3, it remains to consider
k = h = 2 and N1 ∪ N2 = R. Suppose without loss of generality that ℓN (Q1) ≤ ℓN (Q2). Note
that Q2 ⊆ N1 and thus N1 = Q2 ∪ (N1 ∩ N2). This yields ℓN (Q2) + ℓN (N1 ∩ N2) = ℓN (N1) ≤
ℓN (Q1) + ||Q1||a, where the latter inequality stems from the fact that player 1 does not want to
deviate in πN . Together with the assumption ℓN (Q1) ≤ ℓN (Q2) we thus have ℓN (N1 ∩ N2) ≤
ℓN (Q1)− ℓN (Q2) + ||Q1||a ≤ ||Q1||a ≤M(π∗). It follows from Ni = R\Qi, i = 1, 2 that

ℓN (R) = ℓN (Q2) + ℓN (Q1) + ℓN (N1 ∩N2) ≤ ℓN (Q2) + ℓN (Q1) +M(π∗).

Since ℓN (Qi) = ℓ∗(Qi) for i = 1, 2, we obtain ℓN (R) ≤ ℓ∗(Q1) + ℓ∗(Q2) +M(π∗) ≤ 3M(π∗) as
desired.

7 Covering Equilibria with h = 5

For the special case of h = 5, we upper bound ℓN (R)/M(π∗) directly by using structural properties
of the Nash equilibrium.

Lemma 24. If ∪i∈[h]Ni = R and h = 5, then ℓN (R)
M(π∗) ≤ 3.

Proof. Again, by Lemma 3, we only need to consider the case where πN is nonsingular. If πN (e) ≥ 2
for all e ∈ E, then A1 = B1 = 0 in (5) and (7). Collecting terms in (5) gives A3 + 11A4 + 25A5 +
B3 + 3B4 + 5B5 ≤ 5A2 + B2, which is equivalent to 5(

∑5
i=2 iAi + Bi) ≤ 25A2 + 12A3 − 13A4 −

50A5 + 8B2 + 2B3 − 4B4 − 10B5. It follows from (7) that

ℓN (R)

M(π∗)
≤ 5(

∑5
i=2 iAi +Bi)

∑5
i=2((5 − i)2Ai + (5− i)Bi)

≤ 25A2 + 12A3 + 8B2 + 2B3

9A2 + 4A3 +A4 + 4B1 + 3B2 + 2B3 +B4
≤ 3.
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Figure 3: Splitting R at node v, where the Nash path N1 containing e1 is not depicted.

Therefore, we may assume without loss of generality that there exists a link e1 ∈ N1 with
πN (e1) = 1. Note that this implies e1 /∈ ∪5

i=2Ni and, thus, ∪5
i=2Ni 6= R. Starting from link e1, let v

be the clockwise first node where the Nash path Ni of another player i ∈ {2, 3, 4, 5} starts. For the
analysis, let us temporarily split the ring at node v, and put the nodes on a line from left to right,
starting and ending with v. Then for each player in {2, 3, 4, 5}, its Nash path is one line segment
by ∪5

i=2Ni 6= R and definition of v. See Figure 3 for an illustration.
Let F ⊆ {2, 3, 4, 5} consist of two players with the leftmost left endpoints, and L ⊆ {2, 3, 4, 5}

consist of two agents with the rightmost right endpoints. (Going from left to right, F are two of
the first players that start, and L are two of the last players that finish their Nash paths.)

If there exists a player i that is in both F and L—formally if i ∈ F ∩L 6= ∅ (see Figure 3(i) for
an illustration), then the definitions of F and L guarantee that both to the left and to the right
of the path Ni of i in π

N , any link can only be used (in πN ) by at most one player j ∈ {2, 3, 4, 5}
and possibly by the first player. It follows that πN (e) ≤ 2 and hence 3 ≤ π∗(e) for all e ∈ Qi. In
particular we have πN (e) + 1 ≤ π∗(e) for all e ∈ Qi. Since πN is a Nash equilibrium, we conclude
that ℓN (Ni) ≤ ℓN (Qi) + ||Qi||a ≤ ℓ∗(Qi) ≤ M(π∗), giving ℓN (R) = ℓN (Ni) + ℓN (Qi) ≤ 2M(π∗) as
desired.

Therefore, let us consider the case F ∩ L = ∅. Without loss of generality, let player 2 be a
player in F with the rightmost right endpoint, and let player 3 be a player in L with the leftmost
left endpoint (an illustration is given by Figure 3(ii)). Then in πN , any link to the right of N2 can
only be used by players in L ∪ {1}, i.e., it can be used by at most three players, and any link to
the left of N2 can only be used by players in (F\{2}) ∪ {1}, i.e., it can be used by at most two
players. Thus πN (e) ≤ 3 for every e ∈ Q2. Analogously we have πN (e) ≤ 3 for every e ∈ Q3.
Moreover, we see that {e ∈ Q2|πN (e) = 3} ⊆ N3 ∩ N1 and {e ∈ Q3|πN (e) = 3} ⊆ N2 ∩ N1.
On the other hand, from the selections of player 2 from F , and player 3 from L, it is easy to see
that {e ∈ Q1|πN (e) ≥ 3} ⊆ N2 ∩ N3. This implies the following useful inequality, valid for all
assignments {r, s, t} = {1, 2, 3}:

ℓN (Qr\(Ns ∩Nt)) + ||Qr\(Ns ∩Nt)||a ≤ ℓ∗(Qr\(Ns ∩Nt)) . (38)

Let S = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Adding the Nash inequalities for the paths Ni, i = 1, 2, 3,
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and their alternatives gives

3
∑

i=1

ℓN (Ni) ≤
3

∑

i=1

(ℓN (Qi) + ||Qi||a)

=
∑

(r,s,t)∈S

[

ℓN (Qr ∩Ns ∩Nt) + ℓN (Qr\(Ns ∩Nt))
]

+
∑

(r,s,t)∈S
[||Qr ∩Ns ∩Nt||a + ||Qr\(Ns ∩Nt)||a]

It follows from (38) and ||Q1 ∩N2 ∩N3||a ≤ ℓ∗(Q1 ∩N2 ∩N3) that

3
∑

i=1

ℓN (Ni)

≤
∑

(r,s,t)∈S

(

ℓN (Qr ∩Ns ∩Nt) + ℓ∗(Qr ∩Ns ∩Nt) + ℓ∗(Qr\(Ns ∩Nt))
)

=
∑

(r,s,t)∈S
ℓN (Qr ∩Ns ∩Nt) +

3
∑

i=1

ℓ∗(Qi)

=
∑

(r,s,t)∈S

(

ℓN (Ns ∩Nt)− ℓN (Nr ∩Ns ∩Nt)
)

+

3
∑

i=1

ℓ∗(Qi)

=
∑

1≤i<j≤3

ℓN (Ni ∩Nj)− 3ℓN (N1 ∩N2 ∩N3) +
3

∑

i=1

ℓ∗(Qi) ,

thus implying

3
∑

i=1

ℓN (Ni)−
∑

1≤i<j≤3

ℓN (Ni ∩Nj) + ℓN (N1 ∩N2 ∩N3) ≤
3

∑

i=1

ℓ∗(Qi)

Notice that the left-hand side of the above inequality equals ℓN (R) and its the right-hand side is
at most 3M(π∗). The result follows.

8 Concluding Remarks

We have shown that the PoA of network congestion game is two, when the network is a ring and
the link latencies are linear. It is left open whether the PoA is exactly 2d for polynomial latency
functions of degree d. Another challenging open question is what happens in more complicated
network topologies. It is interesting to see if our proof technique can be extended to the more
general class of games where each player can choose between a set of resources and its complement.
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eds.), Lecture Notes in Computer Science, vol. 2125, Springer, 2001, pp. 155–164.

[CCH10] Bo Chen, Xujin Chen, and Xiaodong Hu, The price of atomic selfish ring routing, J.
Comb. Optim. 19 (2010), no. 3, 258–278.

[CCHH11] Bo Chen, Xujin Chen, Jie Hu, and Xiaodong Hu, Stabil-
ity vs. optimality in selfish ring routing, Submitted. Available at
http://people.gucas.ac.cn/upload/UserFiles/File/20120203115847609411.pdf, 2011.

[Che04] Christine T. Cheng, Improved approximation algorithms for the demand routing and
slotting problem with unit demands on rings, SIAM J. Discrete Math. 17 (2004), no. 3,
384–402.

[CK05] George Christodoulou and Elias Koutsoupias, The price of anarchy of finite congestion
games, Proc. of the 37th ACM Symposium on Theory of Computing (STOC 2005),
2005, pp. 67–73.

[Czu04] Artur Czumaj, Selfish routing on the internet, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis (J. Leung, ed.), CRC Press, 2004.

23



[GLMM06] Martin Gairing, Thomas Lücking, Marios Mavronicolas, and Burkhard Monien, The
price of anarchy for restricted parallel links, Parallel Process. Lett. 16 (2006), no. 1,
117–132.

[GLO] GLORIAD, Global ring network for advanced applications development,
http://www.gloriad.org.

[KP99] Elias Koutsoupias and Christos H. Papadimitriou, Worst-case equilibria., Proc. of the
16th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1999),
1999, pp. 404–413.
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