M. Hairer提出的正则结构理论给出了次临界条件下带有奇异噪声随机偏微分方程的局部适定性,由此开创了研究奇异随机偏微分方程的新方向。我们得到了一类没有强耗散的奇异随机偏微分方程的全局适定性,由此给出了不用Cole-Hopf变换KPZ方程的全局适定性,改进了之前的结果。进一步,我们通过随机量子化方法,得到了O(N)量子场在二维和三维的大N极限。最后,我们通过随机量子化的方法研究了量子场的扰动理论,证明了Φ4场的k点关连函数的渐近展开和短距离行为。
相关论文:
[1]Singular HJB equations with applications to KPZ on the real line,Xicheng Zhang, Rongchan Zhu, Xiangchan Zhu, Probability Theory and Related Fields 183 (2022), no. 3-4, 789–869
[2]Large N limit of the O(N) linear sigma model in 3D,Hao Shen, Rongchan Zhu, Xiangchan Zhu, Communications in Mathematical Physics 394 no.3, 953–1009.2022
[3]Large N limit of the O(N) linear sigma model via stochastic quantization,H. Shen, S. Smith, R. Zhu, X. Zhu, The Annals of Probability 2022, Vol. 50, No. 1, 131–202
[4]An SPDE approach to perturbation theory of Φ 42: asymptoticity and short distance behavior,Hao Shen, Rongchan Zhu Xiangchan Zhu,To appear in The annals of applied probability
完成人:朱湘禅,Email:zhuxiangchan@amss.ac.cn; Scott Smith,Email: ssmith74@wisc.edu
附件下载: