对于高维带粘性的标量守恒律方程和可压缩Naiver-Stokes方程,证明了平面粘性激波和疏散波在高维周期扰动下的非线性渐近稳定性。证明的关键在于如何构造合适的拟设来抵消在无穷远处持续振荡的周期扰动,从而可以建立能量估计。特别地,在激波稳定性的结果中,文章给出把扰动的零频和非零频分开估计、再结合反导数技巧的新想法,使得基本能量方法可以得到利用,同时还揭示了周期振荡对激波稳定性的影响与非振荡扰动有本质性的不同。
相关论文:
[1]Qian Yuan. Planar viscous shocks with periodic perturbations for scalar multi-dimensional viscous conservation laws. Accepted by SIAM Journal on Mathematical Analysis. (2022)
[2]Feimin Huang, Lingda Xu, Qian Yuan. Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations. Advances in Mathematics 404, Paper No. 108452, 27 pp (2022)
[3]Qian Yuan, Yuan Yuan. Periodic perturbations of a composite wave of two viscous shocks for 1-D full compressible Navier-Stokes equations. SIAM Journal on Mathematical Analysis 54, no. 3, 2876--2905 (2022)
完成人:袁谦,Email: qyuan@amss.ac.cn
附件下载: